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A B S T R A C T   

In this study, an analysis of the perturbation factors and fractional order derivatives is performed for the novel 
singular model. The design of the perturbed fractional order singular model is presented by using the traditional 
form of the Lane-Emden along with the detail of singular points, fractional order, shape, and perturbed factors. 
The analysis of the perturbation factors and fractional order terms for the singular model is provided in two steps 
by taking three different values of the perturbed term as well as fractional order derivatives. The numerical 
analysis of the perturbation and fractional order terms for the novel fractional Meyer wavelet neural network 
(FMWNN) along with the global and local search effectiveness of the genetic algorithm (GA) and active-set al-
gorithm (ASA) called as FMWNN-GAASA. The modeling of the FMWNN is presented in terms of mean square 
error, while the optimization is performed through the GAASA. The authentication, validation, excellence, and 
correctness of the singular model are observed by using the comparative performances of the obtained and the 
reference solutions. The stability of the proposed stochastic scheme is observed through the statistical perfor-
mances for taking large datasets to present the analysis of the perturbation and fractional order terms.   

1. Introduction 

The singular kinds of differential models have become one of sig-
nificant and interesting subjects for the scholar’s community. The sin-
gular forms of the systems are not easy to solve, challenging, stiffer and 
difficult due to the singularity at the origin. The differential systems 
have a huge implication due to the variety of submissions in engineering 
and scientific areas, e.g., pattern creation, biological models, nonlinear 
circuits, fluidics, chemical reactor models, relativistic mechanics, pop-
ulation evolution, astrophysics, control theory of optimization and 
boundary layer studies [1–6]. The most important singular models are 
Emden-Fowler and Lane-Emden (LE). These two differential models 
have importance and a great history. The LE model is introduced by Lane 
and then Robert updated this model a few centuries ago by working on 
the spherical gas cloud associated with the classical law of thermody-
namics. The general form of the LE model is a second order differential 
equation, which is given as [7,8]: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2p
dk2 +

Δ
k

dp
dk

+ q(p) = z(k), Δ ≥ 1

p(0) = a,
dp(0)

dk
= 0,

(1)  

where Δ represents the shape factor, q(p) is the function of p, z(k) is the 
forcing function and k = 0 shows the singularity at the origin. It is not 
easy to solve these models due to the challenge of singularity and there 
have been only few numerical and analytical schemes have been pre-
sented to solve such models. Some mentioned schemes to solve the 
singular model of LE type given in Eq. (1) are Bernoulli collocation [9], 
Adomian decomposition [10,11], differential transform [12], Legendre 
wavelet [13], B-spline collocation [14], Chebyshev based neural net-
works [15], Jacobi-Gauss collocation [16], rational Bernoulli, Bessel, 
and Euler functions [17–19], the discontinuous local Galerkin [20], 
Lagrange and Jacobi operational matrix [21], machine learning [22] 
and many more [23–27]. The historical LE model given in Eq. (1) shows 
different forms by taking different values of q(p). Some of the forms are 
mentioned as: 

* Corresponding author. 
E-mail address: mohamed.reda@fue.edu.eg (M.R. Ali).  

Contents lists available at ScienceDirect 

Chaos, Solitons & Fractals: X 

journal homepage: www.elsevier.com/locate/csfx 

https://doi.org/10.1016/j.csfx.2023.100100 
Received 27 August 2022; Received in revised form 18 August 2023; Accepted 20 August 2023   

mailto:mohamed.reda@fue.edu.eg
www.sciencedirect.com/science/journal/25900544
https://www.elsevier.com/locate/csfx
https://doi.org/10.1016/j.csfx.2023.100100
https://doi.org/10.1016/j.csfx.2023.100100
https://doi.org/10.1016/j.csfx.2023.100100
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csfx.2023.100100&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chaos, Solitons & Fractals: X 11 (2023) 100100

2

• If q(p) = pu, then for u = 0 or 1, the model (1) is linear, otherwise 
nonlinear.  

• If q(p) = ep, then the model (1) shows the isothermal gas sphere.  
• If q(p) = cosp, coshp, sinp and sinhp, etc., then the model (1) shows 

the nonlinearity.  
• If q(p) = (p2 − C)

3
2, then the model (1) takes the form of white-dwarf 

system, which is presented by Chandrasekhar [28]. 

The fractional order (FO) derivatives have been broadly investigated 
due to the numerous applications in control networks, physical models, 
engineering, and mathematical investigations. The use of the fractional 
calculus with the significant operators, like Riemann-Liouville [29], 
Caputo [30], Erdlyi-Kober [31], Weyl-Riesz [32] and Grnwald-Letnikov 
[33] has obtained a stimulating and valued subject for the researchers 
over the last thirty years. Recently, the FO derivatives have been used 
widely in many applications, some of them are pine wilt disease model 
with convex rate [34], anomalous heat transfer [35], the discrete form of 
the FO SITRs coronavirus system [36], spatiotemporal designs in the 
reaction form of the Belousov–Zhabotinskii models [37], three-species 
model [38], soil organic substance content via near-infrared and visible 
spectroscopy [39], SIDARTHE coronavirus pandemic differential system 
[40], mathematical Hepatitis B virus model [41], SITR fractal system 
[42], Bagley–Torvik mathematical model [43] and vaccination and 
Wolbachia on dengue transmission dynamics in the nonlinear model 
[44]. 

The fractional singular systems got more interesting, difficult, and 
challenging to solve the perturbed factor with the boundary layer per-
formance. These stiff singular fractional perturbed kinds of models are 
not easy to present the solutions by using the standard and traditional 
numerical approaches. Consequently, it is essential to provide some 
consistent and dependable schemes to provide the numerical outcomes 
of these difficult systems [45–51]. A finite difference numerical scheme 
along with the exponential fitting based on the singular perturbed dif-
ferential model is provided in [52–54]. There are many other in-
vestigations using the perturbed singularly diffusion-convection models 
of the second kind is given in [55], semi-linear performances of the 
diffusion-reaction equations are presented in [56] and the numerical 
mesh approach to get the solutions of the diffusion-reaction models is 
described in [57,58]. 

Based on the well-known operators of FO models, the significant 
applications of singular, perturbed, and FO models, the authors are 
interested to present the novel FO singular perturbed differential model. 
The numerical investigations of the perturbation and FO terms is per-
formed by designing the novel fractional Meyer wavelet neural network 
(FMWNN) along with the global/local search effectiveness of the genetic 
algorithm (GA) and active-set algorithm (ASA) called as FMWNN- 
GAASA. The stochastic procedures based on the global/local search 
schemes have been exploited in diverse applications. Few of them are 
health care organizational decision-making systems [59], prediction of 
the outbreak of coronavirus [60], food-chain models [61], development 
of bankruptcy prediction models and their comparison [62], forecasting 
the thermal conductivity of a nanofluid [63], explosion theory [64,65], 
prediction of wind pressure coefficients on building surfaces [66], 
groundwater estimation from major physical hydrology components 
[67], detection and identification of Android malware using 
high-efficient [68] and strength prediction of concrete incorporating 
agricultural and construction wastes [69]. The novel features of the 
singular perturbed FO model are presented as:  

• An analysis by taking small values of the perturbation factors and by 
fixing the values of the FO derivatives is presented to solve the 
designed model.  

• Another analysis by using different FO derivatives values with fixed 
perturbation factor is provided for solving the LE model.  

• The design of the singular perturbed FO model is presented by using 
the traditional/conventional form of the LE along with the detail of 
singular points, FO, shape, and perturbed factors.  

• The analysis of the perturbation factors and FO terms to solve the 
singular LE model is provided in two different steps by taking three 
different values of the perturbed term as well as FO derivatives.  

• The numerical investigations of the perturbation and FO terms is 
performed by designing the novel FMWNN along with the global/ 
local search effectiveness of the GAASA.  

• The modeling based on the FMWNN is presented using the designed 
perturbed FO singular model in terms of mean square error sense, 
while the optimization is performed through the GAASA.  

• The correctness of the FMWNN-GAASA procedure is performed by 
using the comparative performances of the obtained and true solu-
tions for solving the singular model.  

• The constancy, convergence, and reliability of the proposed 
FMWNN-GAASA procedure is observed for solving the singular 
perturbed FO model using different statistical measures based on the 
semi-interquartile range (SIR), variance account for (VAF) and mean 
square error (MSE). 

• Alongside the accurate presentations of the FMWNN-GAASA pro-
cedure, stability, robustness, comprehensive potency, smooth ac-
tions, and ease of understanding are other important features. 

The rest of the paper sections are presented as: Section 2 describes 
the design of the singular perturbed FO model. The FMWNN-GAASA 
procedure is presented in Section 3. The analysis of the results is pre-
sent in Section 4. The conclusions and the future research directions are 
presented in the last Section. 

2. Design of singular perturbed FO model 

The construction of the singular perturbed FO model is presented in 
this section using the procedural steps of the standard LE equation. In 
recent years, the design of various singular models has been presented, 
like 2nd and 3rd order pantograph models, 2nd order delay singular 
model, functional 4th order singular system, singular 5th and 6th kinds 
of differential models [60,61]. Based on these singular models, the au-
thors are interested to solve the singular perturbed FO model. The design 
of the singular perturbed FO model using the standard LE model is given 
as [70,71]: 

εk− Δ ds

dks

(

kΔ dr

dkr

)

p(k) + q(p) = z(k), (2)  

where Δ shows a real value of positive constant. For the singular per-
turbed FO model, the s and r values are selected as: 

s = 1, r = β, where 0 < β < 1. (3) 

The updated form of the Eq. (2) using the Eq. (3) becomes as: 

εk− Δ d
dk

(

kΔ dβ

dkβ

)

p(k) + q(p) = z(k), (4)  

the simplified form of one of the factors in Eq. (4) is given as: 

d
dk

(

kΔ dβ

dkβ

)

p(k) = kΔ dβ+1

dkβ+1 p(k) + ΔkΔ− 1 dβ

dkβ p(k). (5) 

The obtained mathematical formulation is given as: 
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⎧
⎪⎨

⎪⎩

ε dβ+1

dkβ+1 p(k) + ε Δ
k

dβ

dkβ p(k) + q(p) = z(k),

p(0) = 0, p(1) = 0.
(6) 

The above form of the mathematical model is known as singular 
perturbed FO model, where the single singularity and shape factor arises 
at k and Δ, respectively. While the perturbed factors arise twice in 1st 
and 2nd factor. Fig. 1 shows the flowchart illustrations of the singular 
perturbed FO model. 

3. Methodology 

In this section, the design of the FMWNN-GAASA procedure is pre-
sented using the Meyer wavelet neural networks. The construction of the 
differential systems, merit function and the optimization procedure 
using the hybrid GAASA is also described. 

3.1. Merit function: FMWNN procedure 

The designed methodology based on the FMWNN procedure is pro-
vided in this section, p̂(k) indicates the proposed solutions the proposed 

system, d(n)

dk(n) p̂(k)and dβ

dkβ p̂(k) represent the nth integer and fractional form 
of the derivatives, respectively. The system networks are presented as: 

p̂(k) =
∑m

i = 1
miA(wik + ji)

d(n)

dk(n)
p̂(k) =

∑m

i=1
mi

d(n)

dk(n)
A(wik + ji)

dβ

dkβ p̂(k) =
∑m

i=1
mi

dβ

dkβ A(wik + ji)

, (7)  

where, m presents the neurons, m, w and j are the vector mechanisms of 
the weights W, given as: 

W = [m,w, j], for m = [m1,m2, ...,mm], w = [w1,w2, ...,wm] and j

= [j1, j2, ..., jm] .

The Meyer wavelet merit function is presented as: 

A(k) = 35k4 − 84k5 + 70k6 − 20k7. (8) 

The restructured form of Eq. (7) with the use of Eq. (8) is shown as:  

Fig 1. Flow-chart illustrations of the singular perturbed FO model.  
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For the estimated ANN weights, a merit function EM is shown as: 

EM = EM− 1 + EM− 2. (10)  

Where, EM− 1and EM− 2 present the merit functions based on the singular 
perturbed FO model shown in Eq. (6) is given as: 

EM− 1 =
1
N
∑m

i=1

(

ε dβ+1

dkβ+1 p̂m + ε Δ
km

dβ

dkβ p̂m + q(p̂m) − zm

)2

, (11)  

EM− 2 =
1
2
(
(p̂0)

2
+(p̂N)

2)
, (12)  

here p̂m = p̂(km), zm = z(km) Nh = 1 and km = mh. The solution of the 
singular perturbed FO model given in the Eq. (6) is provided with the 
accessibility of suitable weights W, i.e., EM→0, the proposed MWNN 
solutions become alike with the optimal solutions, i.e., [p̂→p]. 

3.2. Optimization of the networks 

The optimization of the networks based on the FMNN is provided by 
applying the hybridization procedures of the GAASA for the numerical 
solutions of the singular perturbed FO model. 

The global search GA provides an efficient constrained or uncon-
strained optimization search approach, which is expressed in the form of 
mathematical processes of genetic natural performance. In the process of 
GA, the individual population frequently alters, i.e., candidate optimi-
zation project solution and the capability to perform the abundant 
optimization models by merging its imitation apparatuses via selection 
measures, crossover process, mutation procedure, and elitism frame-
work. Some updated applications proposed by the GA are the identifi-
cation of the parameter using the multivariable models [72], best weight 
constructions based on the steel space borders [73], controlling of the 
car’s robot [74], thickness of the layer optimization of piezoelectric 
multilayer transducer [75], parameters approximation based on the 
electromagnetic waves of plane [76] and combined load dispatch 
models connecting both wind and thermal generators [77]. The slow-
ness and indolence of GA is reduced through the hybridization perfor-
mances with the local algorithms along with the improved optimization 
process. 

ASA is known as an efficient and quick local search approach based 
on the modification of optimization in various proposals arising in the 
multiplicity. ASA represents a systematized convex optimization scheme 
that is oppressed for constrained and unconstrained modeling. Recently, 
the ASA is used in non-negative matrix factorization [78], 
pressure-dependent models of water distribution systems with flow 
controls [79], linearly constrained non-Lipschitz nonconvex 

optimization [80], a quasi-monolithic phase-field description for 
orthotropic anisotropic fracture [81], embedded model predictive con-
trol [82] and large-scale non-smooth optimization models with box 
constraints [83]. 

3.3. Statistical performance 

The proposed investigations represent the three different forms of 
the statistical performances based on the VAF, SIR, and MSE. The 
mathematical formulations of the exact results p and proposed outcomes 
p̂ are shown as: 

VAF =

(

1 −
var(pi − p̂i)

var(pi)

)

× 100, (13)  

MSE=
∑k

i=1
(pi − p̂i)

2
, (14)  

SIR =
1
2
(
3rd Quartile − 1stQuartile

)
. (15) 

Fig. 2 shows the proposed hybridization procedures based on the 
GAASA for the numerical solutions of the singular perturbed FO model. 
In this figure, the designed singular perturbed FO model, proposed 
modeling based on the ANNs structure, proposed methodology based on 
the GAASA, storage of the data and results performance structure is 
provided. 

4. Simulations and results 

The current section performs the detailed numerical simulations for 
the numerical solutions of the singular perturbed FO model. The single, 
output/input and the hidden layers based on the MWNN is provided in 
the modeling of Eq. (6) using the system (10 to 12), while the optimi-
zation toolbox that is inbuilt Matlab solver is to train the weight vectors 
of the MWNN models to solve the singular perturbed FO model. The 
proposed results based on the FMWNN-GAASA are designed on the basis 
of multiple runs to present the analysis of the perturbation factors and 
FO derivatives in the form of the graphical depictions, accuracy and 
convergence. The mathematical formulations of the singular perturbed 
FO model shown in Eq. (6) is multiplied by k becomes as: 
⎧
⎪⎨

⎪⎩

εk
dβ+1

dkβ+1 p(k) + Δε dβ

dkβ p(k) + kq(p) = kz(k) = L(k),

p(0) = 0, p(1) = 0.
(16)  

where, 

p̂(k) =
∑m

i=1
mi

(
35(wik + ji)

4
− 84(wik + ji)

5
+ 70(wik + ji)

6
− 20(wik + ji)

7
)
,

d(n)

dk(n)
p̂(k) =

∑m

i=1
mi

⎛

⎜
⎜
⎜
⎜
⎜
⎝

35
d(n)

dk(n)
A(wik + ji)

4
− 84

d(n)

dk(n)
A(wik + ji)

5
+ 70

d(n)

dk(n)
A(wik + ji)

6

− 20
d(n)

dk(n)
A(wik + ji)

7

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

dβ

dkβ p̂(k) =
∑m

i=1
ai

⎛

⎜
⎜
⎜
⎜
⎜
⎝

35
dβ

dkβ A(wik + ji)
4
− 84

dβ

dkβ A(wik + ji)
5
+ 70

dβ

dkβ A(wik + ji)
6

− 20
dβ

dkβ A(wik + ji)
7

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(9)   
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where m and n are taken as positive. The update form using the Eqs. (16) 
and (17) is given as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εk
dβ+1

dkβ+1 p(k)+Δε dβ

dkβ p(k)+ kq(p)= εk
(

Γ(m+1)
Γ(m − β)

km− β− 1 −
Γ(n+1)
Γ(n − β)

kn− β− 1
)

+Δε
(

Γ(m+1)
Γ(m − β+1)

km− β −
Γ(n+1)

Γ(n − β+1)
kn− β

)

+ km+2 − kn+2,

p(0)= 0, p(1)= 0.
(18) 

The exact solution of the singular perturbed FO model (18) is shown 

as: 

p(k) = km − kn. (19) 

The updated form of Eq. (19) by taking the values of m = 2 and n = 1 
is given as: 

p(k) = k2 − k. (20)  

4.1. Analysis of perturbation factor 

In this section, three different perturbation cases by taking small 
values are provided by using fixed values the FO derivatives. 

Case 1: Consider the singular perturbed FO model (18) with β = 0.1, 
Δ = 2 and ε = 1

22 is given as:   

A merit function for the 
Eq. (21) 

is given as: 

EM =
1
N

∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
4
km

d1.1

dk1.1 p̂m +
1
2

d0.1

dk0.1 p̂m + kmqm −
1
4

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9
m

+
1
4

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9
m − k3

m + k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(22) 

Case 2: Consider the singular perturbed FO model (18) with β = 0.1, 
Δ = 2 and ε = 1

23 is given as:   

A merit function for the 
Eq. (23) 

is given as: 

EM =
1
N
∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
8
km

d1.1

dk1.1 p̂m +
1
4

d0.1

dk0.1 p̂m + kmqm −
1
8

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9
m

+
1
8

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9
m − k3

m + k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(24) 

Case 3: Consider the singular perturbed FO model (18) with β = 0.1, 
Δ = 2 and ε = 1

24 is given as:   

L(k) = εk
(

Γ(m + 1)
Γ(m − β)

km− β− 1 −
Γ(n + 1)
Γ(n − β)

kn− β− 1
)

+ Δε
(

Γ(m + 1)
Γ(m − β + 1)

km− β −
Γ(n + 1)

Γ(n − β + 1)
kn− β

)

+km+2 − kn+2,

(17)   

⎧
⎪⎨

⎪⎩

1
4

k
d1.1

dk1.1 p(k) +
1
2

d0.1

dk0.1 p(k) + kq(p) =
1
4

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9 −
1
4

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9 + k3 − k2,

p(0) = 0, p(1) = 0.
(21)   

⎧
⎪⎨

⎪⎩

1
8

k
d1.1

dk1.1 p(k) +
1
4

d0.1

dk0.1 p(k) + kq(p) =
1
8

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9 −
1
8

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9 + k3 − k2,

p(0) = 0, p(1) = 0.
(23)   

⎧
⎪⎨

⎪⎩

1
16

k
d1.1

dk1.1 p(k) +
1
8

d0.1

dk0.1 p(k) + kq(p) =
1
16

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9 −
1
16

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9 + k3 − k2,

p(0) = 0, p(1) = 0.
(25)   
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A merit function for the 
Eq. (25) 

is given as: 

EM =
1
N
∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
16

km
d1.1

dk1.1 p̂m +
1
8

d0.1

dk0.1 p̂m +kmqm −
1
16

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9
m

+
1
16

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9
m − k3

m + k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(26) 

The performance of each case of the singular perturbed FO model is 
provided by using the optimization procedures based on the GAASA. The 
stochastic iterative procedure replicates forty executions to perform a 
greater dataset based on the parameters of the MWNN. The accom-
plished MWNN weight vectors are provided in the first set of Eq. (9) to 
evaluate the proposed outcomes for each variation of the singular per-
turbed FO model. The formulations are provided for case 1 to 3 of the 
singular perturbed FO model are presented as:   

The proposed results are performed in Eqs. (27)–(29) along with the 
graphically representations of these results are performed in Fig. 3(a–c), 
while the mean, best and worst results comparison is provided in Fig. 3 
(d–f) for the perturbed cases 1 to 3. The overlapping of the mean, best 
and worst results is performed for each perturbed case, which represent 
the exactness of the FMWNN-GAASA approach. The absolute error (AE) 
performances are presented in Fig. 3(g) for the perturbed case of the 
singular model. The best AE performances are reported as 10− 08 to 
10− 10, 10− 07 to 10− 08 and 10− 06 to 10− 07 for 1st, 2nd and 3rd case. It is 
observed that the perturbation factor is performed good for case 1 as 
compared to other two cases. Fig. 4 shows the performance measures for 
the perturbed case 1 to 3 to solve the singular differential model. The 
scale of the performance gages using the Fitness (Fit), VAF and MSE 
operators for each perturbed case is given in Fig. 4. The Fit performances 
calculated closed to 10− 16 for perturbed case 1, while for perturbed 
cases 2 and 3, the Fit measures lie between 10− 15 and 10− 16, respec-
tively. The EVAF measures are calculated for perturbed case 1 closed to 
10− 15, 10− 13 and 10− 14 for perturbed cases 2 and the EVAF measures 
found in between 10− 12 and 10− 13 for case 3 of the singular differential 
model. The MSE measures for perturbed case 1 are performed in 

between 10− 12 to 10− 13 and 10− 11 to 10− 12 for perturbed cases 1 and 2, 
while for perturbed case 3, these values performed around 10− 11 to solve 
the singular differential model. It is also performed through the per-
formance indices that the case 1 performs very well as compared to other 
two perturbed based cases. 

The convergence plots based on the statistical Fit, VAF and MSE 
together with histograms (HGs) and boxplots (BPs) are derived in Figs. 5 
to 6. The Fit measures are derived in Fig. 5 for each perturbed case of the 
singular model. The Fit values are calculated as 10− 08 to 10− 13, 10− 08 to 
10− 10, 10− 06 to 10− 09 for each perturbed case of the singular model. The 
EVAF measures are reported in Fig. 6, which is around 10− 07 to 10− 15, 
10− 05 to 10− 10, 10− 04 to 10− 08 for each perturbed case of the singular 
model. It is concluded on the behalf of these results that more than 80% 
executions achieved reasonable and precise level of the statistical re-
sults. It is observed that the performances of the case 1 are better as 
compared to other two perturbed cases of the singular differential 
model. 

The analysis of the perturbation factor is further analyzed in Table 1 
by taking minimum, maximum, standard deviation (STD), mean, SIR 

and median operators for 40 executions for solving the singular models. 
The minimum values represent the best performances, while the oppo-
site behavior is noticed in the case of maximum operators. The minimum 
values for the perturbation factor cases are provided as 10− 09 to 10− 10, 
10− 08 to 10− 09 and 10− 07 to 10− 08. The maximum gages are performed 
even bad result and found as 10− 02 to 10− 03 for each perturbation case of 
the singular model. The mean measures for the perturbation factor cases 
are performed as 10− 04 to 10− 05, 10− 03 to 10− 05 and 10− 02 to 10− 04. The 
median representations for the perturbation factor case 1–3 are reported 
as 10− 05 to 10− 06, 10− 04 to 10− 05 and 10− 03 to 10− 05. The STD measures 
for the perturbation factor each case of the model are reported as 10− 03 

to 10− 04. Similarly, the SIR performances are reported in good measures 
for each perturbed case of the singular model. 

The analysis of the perturbed singular performances of three cases is 
presented and it is observed that the values of the ε = 1

22 is performed 
betters as compared to the values of the ε = 1

23 and ε = 1
24. Few witnessed 

points that present the performance of case 1 is better as compared to 
case 2 and case 3 are presented as:  

• The AE performances are reported as 10− 08 to 10− 10, 10− 07 to 10− 08 

and 10− 06 to 10− 07 for 1st, 2nd and 3rd case. 

p̂case− 1 = − 0.016
(

35(1.528k − 0.4368)4
− 84(1.528k − 0.4368)5

+ 70(1.528k − 0.4368)6
− 20(1.528k − 0.4368)7

)

+0.9229
(

35( − 0.26k + 0.1409)4
− 84( − 0.26k + 0.1409)5

+ 70( − 0.26k + 0.1409)6
− 20( − 0.26k + 0.140)7

)

− 0.3689
(

35(1.333k − 0.1116)4
− 84(1.333k − 0.1116)5

+ 70(1.333k − 0.1116)6
− 20(1.333k − 0.1116)7

)

+...+ 3.0335
(

35(0.007k + 0.0345)4
− 84(0.007k + 0.0345)5

+ 70(0.007k + 0.0345)6
− 20(0.007k + 0.0345)7

)
,

(27)  

p̂case− 2 = − 0.171
(

35(0.048k + 1.1747)4
− 84(0.048k + 1.1747)5

+ 70(0.048k + 1.1747)6
− 20(0.048k + 1.1747)7

)

− 0.0231
(

35(0.426k + 0.8044)4
− 84(0.426k + 0.8044)5

+ 70(0.426k + 0.8044)6
− 20(0.426k + 0.8044)7

)

+1.6154
(

35( − 0.327k + 0.478)4
− 84( − 0.327k + 0.478)5

+ 70( − 0.327k + 0.478)6
− 20( − 0.32k + 0.478)7

)

+...+ 1.1114
(

35( − 0.168k + 1.0768)4
− 84( − 0.168k + 1.07)5

+ 70( − 0.168k + 1.076)6
− 20( − 0.168k + 1.076)7

)
,

(28)  

p̂case− 3 = 0.697
(

35(0.024k + 1.2501)4
− 84(0.024k + 1.2501)5

+ 70(0.0240k + 1.2501)6
− 20(0.0240k + 1.2501)7

)

− 1.081
(

35( − 0.65k + 1.5890)4
− 84( − 0.65k + 1.5890)5

+ 70( − 0.650k + 1.5890)6
− 20( − 0.650k + 1.589)7

)

− 0.448
(

35(0.857k − 0.0969)4
− 84(0.857k − 0.0969)5

+ 70(0.857k − 0.0969)6
− 20(0.857k − 0.0969)7

)

+...+ 1.3111
(

35(0.169k + 0.6908)4
− 84(0.169k + 0.6908)5

+ 70(0.169k + 0.6908)6
− 20(0.169k + 0.6908)7

)
,

(29)   
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Fig. 2. FMWNN-GAASA procedure for the numerical solutions of the singular perturbed FO model.  
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Fig. 3. Weights (a–c), solutions performances (d–f) and AE (g) for the perturbed case 1 to 3 for solving the singular differential model.  
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• The performance measures for the Fit operator are performed closed 
to 10− 16 for perturbed case 1, while for perturbed cases 2 and 3, the 
Fit measures lie between 10− 15 and 10− 16, respectively.  

• The EVAF measures are performed for perturbed case 1 closed to 
10− 15, 10− 13 and 10− 14 for perturbed cases 2 and the EVAF measures 
found in between 10− 12 and 10− 13 for case 3 to solve the singular 
differential model.  

• The MSE measures for perturbed case 1 are performed in between 

10− 12 to 10− 13 and 10− 11 to 10− 12 for perturbed cases 1 and 2, while 
for perturbed case 3, these measures are reported as 10− 11 to solve 
the singular differential model.  

• The convergence based on the Fitness is calculated as 10− 07 to 10− 13, 
10− 08 to 10− 10, 10− 06 to 10− 09 for respective perturbed cases of the 
singular model.  

• The EVAF are reported as 10− 07 to 10− 15, 10− 05 to 10− 10, 10− 04 to 
10− 08 for each perturbed case of the singular model.  

• The minimum operator values for the respective perturbation factor 
cases are provided as 10− 09 to 10− 10, 10− 08 to 10− 09 and 10− 07 to 
10− 08.  

• The mean measures for the perturbation factor cases are performed 
as 10− 04 to 10− 05, 10− 3 to 10− 05 and 10− 02 to 10− 04.  

• The median representations for the perturbation factor case 1–3 are 
reported as 10− 05 to 10− 06, 10− 04 to 10− 05 and 10− 03 to 10− 05. 

4.2. Analysis of FO derivatives 

In this section, three different cases of the FO derivatives are pro-
vided by using the fix values the perturbation factor 

Case 1: Consider the singular perturbed FO model (18) with β = 0.1, 
Δ = 2 and ε = 1

25 is given as:   

A merit function for the 
Eq. (30) 

is given as: 

EM =
1
N

∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
32

km
d1.1

dk1.1 p̂m+
1
16

d0.1

dk0.1 p̂m+kmqm −
1
32

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9
m

+
1
32

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9
m − k3

m+k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(31) 

Case 2: Consider the singular perturbed FO model (18) with β= 0.2, 
Δ=2 and ε= 1

25 is given as:    

Fig. 4. Performance measures for the perturbed case 1 to 3 to solve the singular LE model.  

⎧
⎪⎨

⎪⎩

1
32

k
d1.1

dk1.1 p(k) +
1
16

d0.1

dk0.1 p(k) + kq(p) =
1

32

(
2

Γ(1.9)
+

4
Γ(2.9)

)

k1.9 −
1
32

(
1

Γ(0.9)
+

2
Γ(1.9)

)

k0.9 + k3 − k2,

p(0) = 0, p(1) = 0.
(30)   

⎧
⎪⎨

⎪⎩

1
32

k
d1.2

dk1.2 p(k) +
1
16

d0.2

dk0.2 p(k) + kq(p) =
1

32

(
2

Γ(1.8)
+

4
Γ(2.8)

)

k1.8 −
1
32

(
1

Γ(0.8)
+

2
Γ(1.8)

)

k0.8 + k3 − k2,

p(0) = 0, p(1) = 0.
(32)   
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A merit function for the 
Eq. (32) 

is given as: 

EM =
1
N
∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
32

km
d1.2

dk1.2 p̂m+
1

16
d0.2

dk0.2 p̂m+kmqm −
1
32

(
2

Γ(1.8)
+

4
Γ(2.8)

)

k1.8
m

+
1
32

(
1

Γ(0.8)
+

2
Γ(1.8)

)

k0.8
m − k3

m+k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(33) 

Case 3: Consider the singular perturbed FO model (18) with β = 0.3, 
Δ=2 and ε= 1

25 is given as:   

A merit function for the 
Eq. (34) 

is given as: 

EM =
1
N

∑m

i=1

⎛

⎜
⎜
⎜
⎝

1
32

km
d1.3

dk1.3 p̂m+
1
16

d0.3

dk0.3 p̂m+kmqm −
1
32

(
2

Γ(1.7)
+

4
Γ(2.7)

)

k1.7
m

+
1
32

(
1

Γ(0.7)
+

2
Γ(1.7)

)

k0.7
m − k3

m+k2
m

⎞

⎟
⎟
⎟
⎠

2

+
1
2
(
(p̂0)

2
+(p̂m)

2)

(35) 

The mathematical representations of each FO case of the singular 
perturbed FO model are obtained through the optimization of the 
GAASA procedure. The computing iterative scheme replicates for forty 
runs to get a larger dataset using the MWNN parameters. The proficient 

weights through the MWNN are given to assess the obtained results for 
each FO case of the singular perturbed FO model, mathematically shown 
as:   

⎧
⎪⎨

⎪⎩

1
32

k
d1.3

dk1.3 p(k) +
1
16

d0.3

dk0.3 p(k) + kq(p) =
1

32

(
2

Γ(1.7)
+

4
Γ(2.7)

)

k1.7 −
1
32

(
1

Γ(0.7)
+

2
Γ(1.7)

)

k0.7 + k3 − k2,

p(0) = 0, p(1) = 0.
(34)   

p̂case− 1 = − 0.184
(

35( − 0.219k + 0.039)4
− 84( − 0.219k + 0.039)5

+ 70( − 0.219k + 0.039)6
− 20( − 0.219k + 0.039)7

)

− 0.2969
(

35(1.3214k − 0.0135)4
− 84(1.3214k − 0.013)5

+ 70(1.3214k − 0.0135)6
− 20(1.3214k − 0.013)7

)

+1.2369
(

35( − 0.865k + 0.5574)4
− 84( − 0.865k + 0.557)5

+ 70( − 0.865k + 0.557)6
− 20( − 0.865k + 0.557)7

)

+...+ 00006
(

35(1.3485k − 0.4082)4
− 84(1.3485k − 0.4082)5

+ 70(1.3485k − 0.4082)6
− 20(1.3485k − 0.408)7

)
,

(36)  

p̂case− 2 = 0.4193
(

35(0.3232k + 0.3566)4
− 84(0.3232k + 0.3566)5

+ 70(0.3232k + 0.356)6
− 20(0.3232k + 0.356)7

)

+0.0959
(

35( − 1.224k + 0.3166)4
− 84( − 1.224k + 0.3166)5

+ 70( − 1.224k + 0.316)6
− 20( − 1.224k + 0.316)7

)

+1.4671
(

35(0.4170k + 0.0952)4
− 84(0.4170k + 0.0952)5

+ 70(0.4170k + 0.0952)6
− 20(0.4170k + 0.095)7

)

+... − 1.3358
(

35( − 0.566k + 0.1550)4
− 84( − 0.566k + 0.155)5

+ 70( − 0.566k + 0.1550)6
− 20( − 0.566k + 0.155)7

)
,

(37)  

p̂case− 3 = − 0.240
(

35( − 0.410k + 0.3551)4
− 84( − 0.410k + 0.3551)5

+ 70( − 0.410k + 0.355)6
− 20( − 0.410k + 0.355)7

)

+1.0695
(

35(0.5146k − 0.1879)4
− 84(0.5146k − 0.1879)5

+ 70(0.5146k − 0.187)6
− 20(0.5146k − 0.187)7

)

− 1.0906
(

35(0.067k + 0.0423)4
− 84(0.0671k + 0.0423)5

+ 70(0.0671k + 0.0423)6
− 20(0.0671k + 0.0423)7

)

+... − 1.7145
(

35(0.293k + 0.0404)4
− 84(0.2932k + 0.0404)5

+ 70(0.2932k + 0.0404)6
− 20(0.293k + 0.0404)7

)
,

(38)   
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Fig. 5. Convergence of Fit for each perturbed case to solve the singular system.  

Z. Sabir and M.R. Ali                                                                                                                                                                                                                          



Chaos, Solitons & Fractals: X 11 (2023) 100100

12

Fig. 6. Convergence of EVAF for each perturbed case to solve the singular system.  
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The proposed outcomes are provided in Eqs. (36)–(38) together with 
the graphical presentations are presented in Fig. 7(a–c), while the mean, 
best and worst results comparison is provided in Fig. 7(d–f) for the 
fractional case 1 to 3. The overlapping of the mean, best and worst re-
sults is performed for each FO case, which represent the exactness of the 
FMWNN-GAASA approach. The AE performances are presented in Fig. 7 
(g) for the FO case of the singular differential model. The best AE per-
formances are reported as 10− 06 to 10− 09, 10− 05 to 10− 07 and 10− 06 to 
10− 08 for 1st, 2nd and 3rd case. It is observed that the FO derivative is 
performed good for case 1 as compared to other two cases. Fig. 8 shows 
the performance measures for the FO case 1 to 3 to solve the singular 
differential model. The scale of the performance gages using the Fit, VAF 
and MSE operators for each perturbed case is given in Fig. 8. The Fit 
performances calculated closed to 10− 15, 10− 13 for FO cases 1 and 2, 
while for the FO case 3, the Fit measures lie between 10− 14 and 10− 15. 
The EVAF measures are calculated FO cases 1 to 3 closed to 10− 11 and 
10− 12, 10− 09 and 10− 10 and 10− 11 and 10− 12 to solve the singular dif-
ferential model. The MSE measures for FO model are calculated for cases 
1 and 2 closed to 10− 11 and 10− 12, 10− 09 and 10− 10, while for case 3 the 
performances are closed to 10− 11 to solve the singular differential 
model. It is observed that these performances indicate that the case 1 
performs very well as compared to other two FO derivative cases. 

The convergence plots based on the statistical Fit, VAF and MSE 
together with HGs and BPs are derived in Figs. 9 and 10. The Fit mea-
sures are derived in Fig. 9 FO case of the singular model. The Fit values 
are calculated as 10− 05 to 10− 15, 10− 05 to 10− 12, 10− 05 to 10− 13 for each 
FO case of the singular model. The EVAF measures are reported in 
Fig. 10, which is around 10− 05 to 10− 12, 10− 03 to 10− 10 and 10− 05 to 
10− 11 for each FO case of the singular model. It is concluded on the 
behalf of these results that more than 80% executions achieved 
reasonable and precise level of the statistical results. The performances 
of these plots indicate that the case 1 performs is better as compared to 

other two FO derivative cases of the singular differential model. 
The analysis of the FO factor is further analyzed in Table 2 by taking 

minimum, maximum, STD, mean, SIR and median operators for 40 ex-
ecutions to solve the singular models. The minimum values represent the 
good performances, while the opposite behavior is noticed in the case of 
maximum operators. The minimum values for the FO case are provided 
as 10− 08 to 10− 09, 10− 06 to 10− 07 and 10− 07 to 10− 09. The maximum 
gages are performed even bad result and found as 10− 01 to 10− 03 for 
each FO case of the singular model. The mean measures for the FO case 
are performed as 10− 04 to 10− 05, 10− 03 to 10− 04 and 10− 03 to 10− 05. The 
median representations for the FO case 1–3 are reported as 10− 04 to 
10− 05, 10− 03 to 10− 05 and 10− 03 to 10− 06. The STD measures for the FO 
case of the model are reported as 10− 02 to 10− 03. Similarly, the SIR 
performances are reported in good measures for each FO case 1–3 are 
reported as 10− 04 to 10− 06, 10− 03 to 10− 05 and 10− 03 to 10− 06. 

The analysis of the FO performances of three cases is presented that 
the values of the β = 0.1 is performed betters as compared to the values 
of the β = 0.2 and β = 0.3. Few witnessed points that present the per-
formance of case 1 is better as compared to case 2 and case 3 are pre-
sented as:  

• The best AE performances are reported as 10− 06 to 10− 09, 10− 05 to 
10− 7 and 10− 06 to 10− 08 for case 1 to 3.  

• The Fit operator performances are provided closed to 10− 15, 10− 13 

for FO cases 1 and 2, while for the FO case 3, the Fit measures lie 
between 10− 14 and 10− 15.  

• The EVAF measures for the FO cases 1 to 3 closed to 10− 11 and 10− 12, 
10− 09 and 10− 10, 10− 11 and 10− 12 to solve the singular differential 
model.  

• The MSE measures for FO cases 1 and 2 closed to 10− 11 and 10− 12, 
10− 09 and 10− 10, while for case 3 the performances are closed to 
10− 11 for the singular differential model. 

Table 1 
Statistics outcomes using the designed FMWNN-GAASA for perturbed case of the singular differential model.  

Case Operator Statistical performances for the perturbed cases   
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 Minimum 4 × 10− 9 7 × 10− 9 2 × 10− 9 4 × 10− 9 4 × 10− 9 6 × 10− 9 1 × 10− 9 1 × 10− 9 5 × 10− 9 2 × 10− 9  

Maximum 1 × 10− 2 2 × 10− 2 1 × 10− 2 8 × 10− 3 2 × 10− 2 2 × 10− 2 1 × 10− 2 3 × 10− 3 5 × 10− 3 8 × 10− 3  

Mean 8 × 10− 4 9 × 10− 4 8 × 10− 4 3 × 10− 4 8 × 10− 4 7 × 10− 4 5 × 10− 4 2 × 10− 4 3 × 10− 4 3 × 10− 4  

Median 8 × 10− 5 1 × 10− 5 3 × 10− 5 9 × 10− 6 1 × 10− 5 4 × 10− 6 5 × 10− 6 4 × 10− 6 6 × 10− 6 5 × 10− 6  

STD 2 × 10− 3 4 × 10− 3 3 × 10− 3 1 × 10− 3 3 × 10− 3 4 × 10− 3 2 × 10− 3 5 × 10− 4 9 × 10− 4 1 × 10− 3  

SIR 4 × 10− 4 7 × 10− 5 1 × 10− 4 6 × 10− 5 1 × 10− 4 3 × 10− 5 4 × 10− 5 2 × 10− 5 6 × 10− 5 2 × 10− 5 

2 Minimum 4 × 10− 8 3 × 10− 8 2 × 10− 8 3 × 10− 8 7 × 10− 9 2 × 10− 8 7 × 10− 9 9 × 10− 9 2 × 10− 8 7 × 10− 9  

Maximum 3 × 10− 2 9 × 10− 3 7 × 10− 3 6 × 10− 3 5 × 10− 3 4 × 10− 3 3 × 10− 3 2 × 10− 3 3 × 10− 3 1 × 10− 3  

Mean 2 × 10− 3 6 × 10− 4 5 × 10− 4 4 × 10− 4 3 × 10− 4 2 × 10− 4 2 × 10− 4 2 × 10− 4 2 × 10− 4 1 × 10− 4  

Median 4 × 10− 4 3 × 10− 5 7 × 10− 5 4 × 10− 5 4 × 10− 5 2 × 10− 5 2 × 10− 5 2 × 10− 5 5 × 10− 5 2 × 10− 5  

STD 2 × 10− 3 4 × 10− 3 3 × 10− 3 1 × 10− 4 3 × 10− 3 4 × 10− 3 2 × 10− 3 5 × 10− 3 9 × 10− 3 1 × 10− 3  

SIR 7 × 10− 4 2 × 10− 4 1 × 10− 4 9 × 10− 5 9 × 10− 5 6 × 10− 5 5 × 10− 5 6 × 10− 5 6 × 10− 5 3 × 10− 5 

3 Minimum 3 × 10− 7 7 × 10− 8 7 × 10− 8 3 × 10− 8 2 × 10− 8 3 × 10− 8 6 × 10− 8 1 × 10− 8 3 × 10− 8 5 × 10− 8  

Maximum 3 × 10− 2 9 × 10− 3 7 × 10− 3 6 × 10− 3 5 × 10− 3 4 × 10− 3 3 × 10− 3 2 × 10− 3 3 × 10− 3 1 × 10− 3  

Mean 1 × 10− 2 4 × 10− 3 2 × 10− 3 2 × 10− 3 1 × 10− 3 1 × 10− 3 8 × 10− 4 5 × 10− 4 5 × 10− 4 3 × 10− 4  

Median 6 × 10− 3 9 × 10− 3 1 × 10− 4 6 × 10− 5 7 × 10− 5 4 × 10− 5 6 × 10− 5 2 × 10− 5 6 × 10− 5 3 × 10− 5  

STD 2 × 10− 3 4 × 10− 3 3 × 10− 3 1 × 10− 3 3 × 10− 3 4 × 10− 3 2 × 10− 3 5 × 10− 4 9 × 10− 4 1 × 10− 3  

SIR 2 × 10− 3 3 × 10− 4 5 × 10− 4 2 × 10− 4 3 × 10− 4 1 × 10− 4 2 × 10− 4 6 × 10− 5 2 × 10− 4 6 × 10− 5  
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Fig. 7. Weights (a–c), solutions performances (d–f) and AE for the FO case 1 to 3 for solving the singular differential model.  
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• The convergence based on the Fitness is calculated as 10− 05 to 10− 15, 
10− 05 to 10− 12, 10− 05 to 10− 13 for respective FO cases of the singular 
model.  

• The EVAF are reported as 10− 05 to 10− 12, 10− 03 to 10− 10 and 10− 05 

to 10− 11for each FO case of the singular model. 
• The minimum operator values for the respective FO cases are pro-

vided as 10− 08 to 10− 09, 10− 06 to 10− 07 and 10− 07 to 10− 09.  
• The mean measures for the FO cases are performed as 10− 04 to 10− 05, 

10− 03 to 10− 04 and 10− 03 to 10− 05.  
• The median representations for the FO cases 1–3 are reported as 

10− 04 to 10− 05, 10− 03 to 10− 05 and 10− 03 to 10− 06. 

5. Conclusions 

The current study presents an analysis of the perturbation factors and 
FO derivatives to solve the novel singular LE model. The singular models 
are very important, historical, and always challenging to solve due to the 
singularity at the origin. The perturbed FO design is presented first time 
by using the traditional LE model along with the detail of singular 
points, FO, shape, and perturbed factors. Few concluding remarks of this 
study are presented as:  

• The design of perturbed fraction order singular model is presented by 
using the traditional form of the LE.  

• The numerical investigations of the perturbation and FO terms has 
been performed by designing the novel FMWNN along with the 
global and local search effectiveness of the GAASA.  

• The modeling based on the FMWNN is presented using the designed 
perturbed FO singular model in terms of mean square error sense, 
while the optimization is performed through the GAASA.  

• The authentication, validation, excellence, and correctness of the 
perturbed FO singular model has been observed by using the 

comparative performances of the obtained and the reference solu-
tions based on the perturbation and FO terms.  

• The analysis of the perturbation factors and FO terms in the singular 
LE model has been provided in two different steps by taking three 
different values of the perturbed term as well as FO derivatives.  

• The analysis of the perturbed singular and FO derivatives for three 
different cases has been presented and it is performed that the results 
of case 1 for both are more betters as compared to the other two 
cases.  

• The analysis of both the perturbed singular and FO derivatives is 
performed through the plots of AE, performance indices, conver-
gence analysis, EVAF, MSE and other statistical operators like min-
imum, mean, SIR, median and STD. 

Future research directions 

The analysis of the perturbation factors and FO derivatives to solve 
the novel singular LE model is presented in this study. In upcoming 
work, the analysis of the FO derivative values can be performed by 
taking the values close to 1. The analysis is performed in the future by 
taking the biological models, fluid models and other nonlinear differ-
ential models [84–90]. 

Impact statement 

In this paper, we consider the well-known Lakshmanan-Porsezian- 
Daniel (LPD) Eq. (1) which describe the effect on the integrable prop-
erties of Heisenberg bilinear spin chains under the classical limit by the 
biquadratic interactions. The Lax pair have been driven via the AKNS 
scheme and the soliton solutions have been obtained via the inverse 
scattering transformation (IST) method. The obtained solutions based on 
different choices for the arbitrary constants α and β have been graphi-
cally represents. 

Fig. 8. Performance measures for the FO case 1 to 3 to solve the singular differential model.  
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Fig. 9. Convergence of Fit for each FO case to solve the singular system.  
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Fig. 10. Convergence of EVAF for each FO case to solve the singular system.  
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